a2 United States Patent

US009449297B2

10) Patent No.: US 9,449,297 B2

Kasi et al. 45) Date of Patent: Sep. 20, 2016
(54) EXPOSING PROCESS FLOWS AND USPC et 709/218, 224
CHOREOGRAPHY CONTROLLERS AS WEB See application file for complete search history.
SERVICES
56 References Cited
(75) Inventors: Jayaram Rajan Kasi, San Jose, CA (56)
(US); Vinkesh Omprakash Mehta, U.S. PATENT DOCUMENTS
Austin, TX (US); Raghunath
Sapuram, Cedar Park, TX (US); 2002/0188666 Al* 12/2002 Lemon etal. 709/203
Ramshankar Venkat. Santa Clara. CA 2003/0088679 Al* 5/2003 Hofi ...coocvvevrrrnrnn. HO4L 67/2861
> ’ 709/229
us) 2003/0167296 Al* 9/2003 Todd, ITccecvvvenrnnene 709/203
2005/0144170 Al* 6/2005 Wiser et al.ccocovveenenn. 707/8
(73) Assignee: OPEN INVENTION NETWORK,
LLC, Pound Ridge, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this WSCL (Banerji et al.), Web Services Conversation Language, Mar.
patent is extended or adjusted under 35 2002, HP, retrieved from the internet <URL: w3.org/TR/wscl10/>,
U.S.C. 154(b) by 1006 days. pp. 1-21 as printed *
(Continued)
(21) Appl. No.: 12/042,325
(22) Filed: Mar. 4, 2008 Primary Examiner — Aravind Moorthy
(74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld
(65) Prior Publication Data LLP
US 2008/0184265 Al Jul. 31, 2008
(57) ABSTRACT
Related U.S. Application Data The present invention relates to computer-based devices and
(62) Division of application No. 10/246,512, filed on Sep. methods supporting document exchange choreographies.
18, 2002, now Pat. No. 7,340,508. More particularly, aspects of the present invention relate to
devices and methods that facilitate evolution of systems by
(51) Int. CL various combinations of choreography versioning, service
GOG6F 15/16 2006.01 versioning and document versioning. It provides for chore-
() g g Itp
GOG6F 15/173 (2006.01) ography management using a choreography agent and pres-
G06Q 10/10 (2012.01) ents choreography-enabled interfaces to non choreography
HO4L 29/08 (2006.01) enabled applications. Additional aspects of the present
invention include a graphical design tool and transparent
(52) US. CL grap g P
. aliasing of a host service as multiple context setting fran-
CPCcccc... G060 10/10 (2013.01); HO4L 67/02 g p g
(2013.01); HO4L 69/329 (2013.01); HOAL chised services. Particular aspects of the present invention
67/142 (2013.01); HO4L 67/16 (2013.01) are described in the claims, specification and drawings.
(58) Field of Classification Search

CPC ... HOAL 67/16; HO4L 67/142; G0O6Q 10/10

810
~

choreography
agent

16 Claims, 12 Drawing Sheets

620
~N

process
angine

Company A
Process

Cenlral Ghoreography
Management Process ,

process.
angine

pracess
engine

Company B
Process

US 9,449,297 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

WSCI (Arkin et al.), Web Services Choreography Interface, Jun.
2002, BEA-SAP-SUN-intalio, retrieved from the internet <URL:
w3.org/TR/wsci/>, pp. 1-114 as printed.*

Krithivansan, Raja; BizBuilder—an E-services Framework for
Internet Workflow; 2001; Retrieved from the Internet <URL:
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.2354
&rep=rep 1 &type=pdf>; pp. 1-67 as printed.*

Dan et al.; The Coyote Project: Framework for Multi-party E-Com-
merce; 1998; Retrieved from the Internet <URL: link.springer.com/
chapter/10.1007/3-540-49653-X_ 87#page-1>; pp. 1-17 as
printed.*

Huang et al; A Workflow Portal Supporting Multi-Language
Interoperation and Optimisation; 2000; Retrieved from the Internet
<URL: researchgate.net/profile/David_ Walker13/publication/
230531293 A workflow_ portal _supporting_ multilanguage
interoperation__and_ optimization/links/
00b4952270¢2¢97ee6000000.pdf>; pp. 1-11 as printed.*

* cited by examiner

U.S. Patent

Sep. 20, 2016
201
first
101 service
document

versions and

translations

102

service
versions

103
choreography
versions

Fig. 1

T

11

Y

version

N

Sheet 1 of 12

211

first message

US 9,449,297 B2

201
second
service

ol

212

|~ subsequent

messages
®

221

A

Y

222

223

Y

224

A

Fig. 2

selection logic

A

—

321 322
method method
A A

331

first
registry

Fig. 3

323

method

32

second
registry

U.S. Patent Sep. 20, 2016 Sheet 2 of 12 US 9,449,297 B2

411 request/
response

412 solicit/
response

413 ———— notification

Time

414 [—————one-way

Fig. 4

process flow

activities

—>» 521
T e]

412

I 522

413 ! \
——0d 523] 524
i \

| 525

Fig. 5

U.S. Patent

630 N

~

service \,

Ve

.

process
engine

Company A
Process

4
o ————
—-— —
ri

T
&8

Sep. 20, 2016

610

~

Sheet 3 of 12

choreography
agent

Central Choreography
Management Process

(
r611

interface

| =

7 4::\
=

)| .

612

620

US 9,449,297 B2

|/

process
engine

J

service

/
7/
interface
\
613
614 Company C
(Process
\ interface _ y,
e~
~N
=)
\
Yo
640

\
\

S

pracess
engine

Company B

Process

f—dlll—iﬁ

I
|
|
|
!
I
J

Fig. 6

US 9,449,297 B2

Sheet 4 of 12

Sep. 20, 2016

U.S. Patent

0€s

S90IAI9S
ps|geus
Aydesbosioyo

aoeLIs)uI
plepuels

/. "B

[

soepaUI
plepue)s

Aydesbosioyo
Buiobuo 1o mau

¢l

\

S8820Id

Buiiqeuz

a160|

uoljeja1gp
\ obesspi\

/7

/]

/(XA
sobessawl
uiypm
splay

0z2 -

§S3800I4
pajgeus UuoN

U.S. Patent

810
s

Sep. 20, 2016

registry of
services

Sheet 5 of 12

811

8129

serviceEIV
service El

Registry

831

service
logic

832

service
logic

910
Vs

registry of
services

franchised

911

service

franchised\

912

service 3

franchised

913

%]//

service V

host service

921

Registry

Fig. 8

US 9,449,297 B2

931

host
logic

Fig. 9

US 9,449,297 B2

Sheet 6 of 12

Sep. 20, 2016

U.S. Patent

P

NHTNHH S

Crganization
R

Wabal friogmat
M

TR

& Heewriche

R

vy
T T TTTIH Hu

R R R

NS

ckbcl;;;a:{t ‘t‘h;_z ':tDD to selick Br-dege'lzag’t'au '_ch'ecl%ques.

LN
“&&&\M\\‘

Manage Host Packages
an: the Diﬁe_

oS

Hy

T Packages
-_Ci_:c:k (5] O3 UDi‘l.'{{rlﬂ I"{tl'_e;ﬁz-s_ert ‘ﬁha‘f_c:o'mmn_, L
thostproviderd
'ostprovide 2

‘description
idescription

Host Package 1

Host Package 2

Fig. 10

U.S. Patent Sep. 20, 2016 Sheet 7 of 12 US 9,449,297 B2

Loflgborative Web - smiichats mabal (st L eameRte o
Services Bwirshment Bzlp o R
.

Descrigtion

Stakos

e

Active from; EME:’CB’; ~~gefaults o
P

izl

Associsted Serwite
Clagsifigstioas

1104

Classification?

grted Puldic
Choregqraphiss

1105

CHOvEDgraprl

Zhorengraphy?

‘cehnecter.
DO name-(only. Foi MML)

DIf PO oname s specfied, and DRID. s left blank,

{DDID (only for MML}

1103 Zapplication Instance .
SName

Application Service

: _I_d‘entifier

Wisthility

it]

apparted Dactiment Exchange e

C Iipl;i. forcs the Gﬁs-clébb vtﬁe._.at;th_ & vt'op_ b} séieﬁ: ardes E,lg &,a fuks] ckﬁa RS

‘Messaging Policies::

Fig. 11

U.S. Patent Sep. 20, 2016 Sheet 8 of 12 US 9,449,297 B2

Y gssa e (i dhint | Goasniea tias Providsy Orgs

\.\\m‘@\\ S

\\\\\ W

= AR %\\\\}\\Q\‘.\%\\\\\

gad Dnly Mame
‘Request Response (Receve and Send}

:Descrlptlon

Privilege Details | L 19011

cHhiat can:be: 1o BB S Lol 8

This sarviis setivity: 513

iliBe izt e asi 5

jor- Ty Ral=Rs 1

i ey roles oy service rolgs
Can only be usedin service roles

Ly ALY s AChVITY4
; Aehivity 3

Is asym:hrun s delivery chclpt requlred"’""‘ nly Jf the service policy "I's asynchiranous
li nrt accepted by this service?™ =yestsa

Allow - data mining threisgh message cante

Fllovr miessage Brchivaly

‘ DRI {Globally Wriique
T ame)
i Signing Palicy:

L Dozuiient

iExternal Referencet Unspecified mime type

: Othier Attashment: Trmagedjpen

YRI:(Giabally Unique
Name)

Sigring Palicy

: l':m:ry[stmn Policy

P L Cydarrrent

§Externa| Reference; Unspecified rmirme type

U.S. Patent

Sep. 20, 2016

Sheet 9 of 12

US 9,449,297 B2

Is-asynchronousidelivery roceipt accepted by this

RS&-SEHAL-C14N
RES&-MD5-C14N
DSA-SHAL-C14N
REA-SHAL-EXC14M
REA-MDS-EXCL4H
DEA-EHA1-EXC14N

iiasllewed Encryption &lgorithms

3DES-RSA-2048
RC4-123-REA-204
RiZZ-128-REA-204
AES-1Z28-R5A-2048
DES-REA-1024

&

AssasssassassLasy

Specify Service Roles . 1304

“These servics Fales will b availa

ariHps EloRg

Sl B S S R R e

I iservice Ralel

Priviiede Loprivileine 25 Privilege:4

Service Role?

iPr‘ivi\age 1, Privilege 3

Fig. 13

U.S. Patent Sep. 20, 2016 Sheet 10 of 12 US 9,449,297 B2

siﬁ} " Wbl W gt

oy
S

 rpesERee,

Ca iahﬁ?ag‘f

X \
\%\\% x\’ \\ 1

[Register a New] [Edit] Host Package

" Details

*Host Package Name

: Descrmtmn T
s — 1402
Status B Inactive I active
Active from: {March #§{51 ;
Lt

;ﬂ.pp_litatib.n Nal;l’lgg ! ‘ : 1403

Host Service Provider [8 —— 1404
HF hise & 1
Eranehi proial e v v 1405

: tunngttn_r ! E}% — 1406

“Alow franchisee to
delegate authentication & ves O No — 1407
to the hast?

‘Gervices for Franchising — 1408

skioreznlent all chech by

descrptan:

Servicos for Subseription —— 1409

v

Inactive

Fig. 14

U.S. Patent Sep. 20, 2016 Sheet 11 of 12 US 9,449,297 B2

EEBbIdEs Sngahina

Cotlafirative Wb S
Services Bweboomant
ik :

Fig. 15

el

N Sreses i Fuiahing fbiadi D an

Prvidar s sniz ation

Franchise New Fackage

s Basic franaion

1601 :Backagename

HiHesy Cennigior
\ Authentication

Informatisn

Use Franchising Fa ~oCrelegate o Hast s

d only

atg o Hast, if parmitted by Host
-

A e e

1602

FEREE

)?er'vw-:e &

sives Ty Wl bl

bt

1604

Serviced

U.S. Patent

Sep. 20, 2016

Sheet 12 of 12

US 9,449,297 B2

Sorvice Fackags

LAEreiEe '[_l'efihitisn

Host Samice

FHost Service Provider {provider]

iDescripboen [dascription]

Cofmertar connectornan

DY e DO pael ~ Ohvarne and DDIC rains 1o becdispiaved o D ndme is spEci

bib If OO d, and DTG is left Blank,
will generate-an unique DOID.

statuy D Inactive 10 fickive

Retive frarg { March

g A

PET o defanles tn

Eranrhising Pasty:

IAssnciated Service

vaide‘_ﬁr Reguirdd

isupported Public
Chorengraphies

Classifications

: i

LI [description]
Subsiription Sequired oy £ e
subscription Spprevalby o o~

MLBRES Smsstraleat

[de:crlptlon]

iChorengraphy2 |

bXML-BPSS iehWML

Farty 3

e e

Siblsita saleenad

ssaging. Policies

VIs asynchronous delivery receipt accepted by this Yes
Service? e
- Envelope Protocal C1 S0AP 1.0

Fig. 17

US 9,449,297 B2

1
EXPOSING PROCESS FLOWS AND
CHOREOGRAPHY CONTROLLERS AS WEB
SERVICES

RELATED APPLICATIONS

This application is a divisional of U.S. application Ser.
No. 10/246,512, entitled “Exposing Process Flows and
Choreography Controllers as Web Services” which is pro-
jected to issue as U.S. Pat. No. 7,340,508 on 4 Mar. 2008 and
which is incorporated by reference.

This application is related to the commonly owned U.S.
patent application Ser. No. 10/199,967, entitled “Electronic
Commerce Community Networks and Intra/Inter Commu-
nity Secure Routing Implementation”, by inventors Raghu-
nath Sapuram, Jayaram Rajan Kasi, Todd Klaus, Christopher
Crall, and Joseph Sanfilippo, filed on 19 Jul. 2002 and
incorporated herein by reference. This application also is
related to the commonly owned U.S. patent application Ser.
No. 10/199,963, entitled “Registry Driven Interoperability
and Exchange of Documents”, by inventors Christopher
Todd Ingersoll, Jayaram Rajan Kasi, Alexander Holmes,
Michael Clark, Ashok Aletty, Sathish Babu K. Senathi, and
Helen S. Yuen, filed on 19 Jul. 2002 and incorporated herein
by reference. This application further is related to the
commonly owned U.S. patent application Ser. No. 10/222,
008, entitled “Dynamic Interface between BPSS Conversa-
tion Management and Local Business Management”, by
inventors Qiming Chen, Meichun Hsu, and Vinkesh Mehta,
filed on 15 Aug. 2002 and incorporated herein by reference.

This application is related to two commonly owned U.S.
patent applications filed the same day as this application,
entitled “Dynamic Negotiation Of Security Arrangements
Between Web Services”, by inventors Symon Szu-yuan
Chang, Joseph S. Sanfilippo, Jayaram Rajan Kasi, and Chris
Crall and “Dynamic Interoperability Contract for Web Ser-
vices”, by inventors Jayaram Rajan Kasi, Rashmi Murthy,
Symon Szu-yuan Chang, Todd Klaus, and Helen Yuen. The
two applications filed the same day are hereby incorporated
by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains screen images that are subject to copyright protec-
tion. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates to computer-based devices
and methods supporting document exchange choreogra-
phies. More particularly, aspects of the present invention
relate to devices and methods that facilitate evolution of
systems by various combinations of choreography version-
ing, service versioning and document versioning. It provides
for choreography management using a choreography agent
and presents choreography-enabled interfaces to non chore-
ography enabled applications. Additional aspects of the
present invention include a graphical design tool and trans-
parent aliasing of a host service as multiple context setting
franchised services. Particular aspects of the present inven-
tion are described in the claims, specification and drawings.

15

40

45

2

Business-to-business (B2B) and application-to-applica-
tion (A2A) electronic commerce are replacing former pro-
tocols for electronic data interchange (EDI). As businesses
strive to improve their efficiency with B2B and A2A sys-
tems, a number of incompatible platforms and competing
standards have emerged. Among compatible standards, gaps
remain to be filled. For instance, the industry has defined
what a simple web service is. Standards related to simple
Web service include UDDI, WSDL, XSDL and SOAP.
However, these standards do not fully meet the security,
reliability, manageability, and choreography requirements
for practical B2B and A2A electronic commerce. In this
context, choreography of message exchanges among ser-
vices includes setting a pattern for the choreographed
exchange and tracking messages that are part of the
exchange with an identifier, such as a conversation ID.
Choreography in particular presents competing platforms
with numerous options and configuration issues. Collabora-
tive web services and their choreographies are expected to
evolve as non-web businesses do. There is no any compre-
hensive or unified device or method that dynamically
resolves issues arising from evolution.

One way of implementing B2B and A2A electronic com-
merce is use of web services. Web services are a fundamen-
tally new way of exposing functionality in a modular way
over the web. At the present stage of web service evolution,
much attention is focused on document exchange and RPC
web services. An RPC web service supports an RPC pro-
gramming paradigm where the invoker invokes a web
service by invoking something that looks like a procedure
call with in/out parameters.

Current implementations of web services typically con-
form to three standards. UDDI is a registry standard for
discovering web services based on search criteria and down-
loading its interface. WSDL is a interface standard that
defines the messaging interface of a web service. SOAP is a
envelope protocol standard with defined bindings to HTTP
(S) transports that are used to carry the payloads over the
wire. Web services typically rely on the XML standards like
XSDL, Xlink, Xbase, and Xpointer and general web stan-
dards like HTTP(S) and URI.

Most of the web services today are simple web services.
Simple web services use synchronous unreliable HTTP(S)
transports and have no support for security except for
transport level security, or agreed to security information in
the payload understood privately by the communicating
parties. Simple web services contain operations. Invoking a
web service means invoking an operation of the web service.
An operation might be designed to accept a one-way mes-
sage or to support a request/response paradigm where the
invoker blocks for the response and the invoked service
immediately responds. Simple web services may use the
RPC programming paradigm or a document based program-
ming paradigm.

An emerging challenge in standard-compliant web ser-
vices is to define high performance web services to improve
the business performance of the enterprise. Such web ser-
vices will support invocation with reliability (exactly once),
asynchronous transports like SMTP, IMS, privacy (encryp-
tion), integrity (signing), authentication and authorization,
and routing.

Another emerging challenge will be to define collabora-
tive web services. These web services might hold long
duration interactions with other web services and might
invoke non collaborative web services without a choreo-
graphed, conversational context. Such collaborative web

US 9,449,297 B2

3

services will require support for correlating related messages
in a conversation and support for a return address.

There are a number of industry initiatives to extend
standards applicable to B2B and A2A electronic commerce.
Choreography efforts include ebXMIL/BPSS from OASIS,
WSFL from IBM, and XLANG from Microsoft. Conversa-
tion efforts include ebXML/TRP from OASIS and Micro-
soft’s WS-routing. Additional efforts include BPEL4WS
(Business Process Execution Language for Web Services),
from IBM, Microsoft and BEA Systems, and Web Service
Choreography Interface, from Sun Microsystems, WSCL
(Web Services Conversation Language), and BPML (Busi-
ness Process Modeling Language). So many choreography
efforts are under way that some industry leaders in Septem-
ber 2002 asked the W3C standards body’s Web Services
Architecture Working Group to set a standard that will
resolve incompatibilities. For reliability, there are proposals
from Microsoft, ebXML/TRP from OASIS, and HTTPR
from IBM. W3C is addressing standardization in all of these
areas. Key industry players have formed a rival consortium
called WSI. However, they have not addressed the service
evolution and choreography issues.

Accordingly, an opportunity arises to develop methods
and devices that support evolving document exchange cho-
reographies.

SUMMARY OF THE INVENTION

The present invention relates to computer-based devices
and methods supporting document exchange choreogra-
phies. More particularly, aspects of the present invention
relate to devices and methods that facilitate evolution of
systems by various combinations of choreography version-
ing, service versioning and document versioning. It provides
for choreography management using a choreography agent
and presents choreography-enabled interfaces to non chore-
ography enabled applications. Additional aspects of the
present invention include a graphical design tool and trans-
parent aliasing of a host service as multiple context setting
franchised services. Particular aspects of the present inven-
tion are described in the claims, specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the capability to dynamically determine
document versions and translations, service versions and
choreography versions.

FIG. 2 illustrates how messages exchange regarding ser-
vice versions.

FIG. 3 illustrates reference to one or more registries is
used to discover information for negotiations.

FIG. 4 illustrates the four types of activities.

FIG. 5 illustrates interactions between activities and an
internal process.

FIG. 6 illustrates an internal process flow executing in a
process engine used to construct a choreography agent.

FIG. 7 illustrates message correlation.

FIGS. 8 and 9 help distinguish between a regular, non-
franchised service and a franchised service.

FIGS. 10-17 are screen shots of one embodiment that
practices aspects of the present invention. FIG. 10 is a
manage host packages screen.

FIG. 11 depicts parts of registering a new host service.

FIG. 12 depicts a screen used to edit document exchange
activities.

FIG. 13 depicts a screen used verify or modify signing
and encryption policies.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 14 depicts a screen used to register a host service
package.

FIG. 15 depicts a screen used to select a new package to
franchise.

FIG. 16 depicts a screen used to select the franchise
options.

FIG. 17 depicts a screen used to edit service details.

DETAILED DESCRIPTION

The following detailed description is made with reference
to the figures. Preferred embodiments are described to
illustrate the present invention, not to limit its scope, which
is defined by the claims. Those of ordinary skill in the art
will recognize a variety of equivalent variations on the
description that follows.

Communities and networks of communities are one envi-
ronment in which computer-assisted devices and methods
implementing document exchange choreographies are use-
ful. Among these communities, a community maintains a
local registry that includes information such as users, com-
panies, services and connectors that are part of the commu-
nity. The community can be a marketplace, an enterprise or
a sub enterprise. Communities can belong to one or more
community networks. Typically, communities and networks
have some common business interest. Interoperation is
between member communities in one or more community
networks. A network of communities makes available a
global registry of communities. The global registry permits
lookup of the community and determination of one or more
routes to that community, or to external connectors through
which the electronic commerce documents bound for the
community may be routed. Documents routed from one
community to another may be routed directly between
external connectors for the two communities or indirectly
through one or more intermediary communities. Business
and security rules for transactions involving the communi-
ties also can be defined and maintained in community
registries. Connector is a general term for applications that
communicate with other applications. Connectors may com-
municate on a peer-to-peer (P2P) basis or on a directed basis
through other connectors that function as hubs, gateways,
external ports, central connectors, etc. Connectors that com-
municate P2P are able to communicate with other connec-
tors that use the same transport/envelope protocols. Con-
nectors that communicate P2P optionally may enlist the
assistance of other hub connectors that perform translation
services, when trying to communicate with a connector that
does not use the same transport/envelope protocol. Connec-
tors that communicate on a directed basis communicate
through hub connectors according to routing rules. Routing
rules among connectors can be mapped in a directed graph,
supporting one or more hub and spoke topologies for one or
more transport/envelope protocols. A hub and spoke topol-
ogy directs communications along spokes to hubs, in one or
more tiers. This facilitates centralized services such as
billing, business intelligence collection, tracking, auditing,
accounting, or others. Multiple hub and spoke organizations
may overlay the same connectors to support different trans-
port/envelope protocols and technologies. For instance, a
stronger hub and spoke organization may be required to use
Sonic as a transport technology than to use HI'TP or HTTPS.
Optionally, communication routes may depend on whether
the source and destination are part of the same community.
Within a sub-community (which may include the whole
community), centralized functions may be unneeded and
P2P communications permitted among connectors that oth-

US 9,449,297 B2

5

erwise are directed to communicate with parent connectors
when communicating with destinations in other sub-com-
munities.

Connectors may be labeled simple connectors (sometimes
simply called connectors), hubs (sometimes called gateways
or routers) or central connectors. Alternatively, they may be
described functionally. Simple connectors are directed to
communicate via hub connectors, except when they are
permitted to communicate P2P among connectors in the
same sub-community. So-called hubs are used by connectors
that are explicitly directed or linked to them. Hubs may
serve more than one function and, accordingly, may appear
more than once in a route from a source to a destination.
Hubs forward electronic commerce documents or messages.
Hubs also may translate among transport protocols that
support a common envelope protocol. For instance, a hub
may translate envelope protocols and also implement a
different transport protocol upon transmission than upon
receipt. A central connector is a special case of a hub, which
can be used by connectors that are not explicitly directed or
linked to them. A central connector is useful, for instance, to
carry out translation functions when traversing connectors
from a source according to routing rules does not lead to any
hub that supports the transport/envelope protocol used by
the destination.

In the standards context, WSDL is a standard-based
language used to define so-called service definitions (which
WSDL calls porttypes), service instances (services), and
connectors (ports). A service definition is like a class defi-
nition. WSDL names the service type, defines a set of
operations for the service definition, which are essentially
methods of the service, and defines the input/output mes-
sages of the operations. Operation types specified by WSDL
include notification (one outward bound message), one-way
(one inward bound message), solicit/response (synchronous,
with one outward message followed by one inward message)
and request/response (synchronous, with one inward mes-
sage followed by one outward message). WSDL does not
deal with choreography of interactions between services.

Aspects of the present invention go well beyond WSDL
to address choreographed operations in a service. Collab-
orative operations are invoked by collaborative interactions,
where an operation in one service instance invokes an
operation in another service instance. The collaborative
interactions between two service instances are part of a
single conversation, where a conversation is a bi-directional
flow of messages and is a choreography instance. A message
in a conversation typically includes a conversation 1D, the
choreography that applies, and identification of or a return
address to the initiating service/operations.

FIG. 1 illustrates the capability, combining several aspects
of the present invention, to dynamically determine docu-
ment versions and translations 101, service versions 102 and
choreography versions 103, for a particular message
exchange choreographed as a conversation. These dynamic
determinations are described in some of the related appli-
cations and below.

A message in WSDL has a name, and a set of parts. Each
part has a name, a MIME content type, and a schema
definition for the part if XML.

The present invention adds the concept of a document
family, instead of an explicit scheme definition for an XML
part, which supports dynamic determination of document
versions. A document family is a set of document versions
whose scheme defines the document structure. This allows
two interacting services to support different versions of the
document. Version transformation logic is provided to trans-

10

15

20

25

30

35

40

45

50

55

60

65

6

form to the source document to the required target document
schema. This allows evolution of document versions without
upgrading all services in the network that interact with each
other using that document. This is so-called document
version interoperation, which is further described in the
Registry Driven Interoperability and Exchange of Docu-
ments application, identified above.

The present invention introduces the concept of a service
definition version, which also can be dynamically deter-
mined. A new version can add new optional parts or delete
existing optional parts to an existing in/out parameter or
document and can add new operations to an earlier version
of a service. Service instances using the earlier version can
correctly address with the upgraded, new version of the
service instance because the version number is not part of
the service definition name in the message address. (An
address typically includes is a party/service definition name/
operation.) In general, service definitions are templates for
service instances (sometimes simply called services) that
follow the definitions. Defining service template is like
defining a type, while defining a service instance is like
defining a variable of that type. A service definition has a
name and version and defines the list of activities in the
service along with one or more activity interfaces. The
interface does not explicitly identify the documents sup-
ported, but at least identities the document family supported.
A document family is a set of documents with the same
business function. For example “purchase order” is a docu-
ment family and xCBL 3.5 purchase order and Rosettanet
1.0 purchase order are members of that family. Service
definitions may be established by a community administra-
tor, may be adopted from a vendor such as Commerce One,
or, in the future, may be defined by standards bodies. Service
instances complete the interface definition by specifying the
actual versions documents used. The instance also specifies
the policies of the service, and the CP offering the service.
It also specifies the connector it is hosted in. Messages are
sent and received by service instances. Preferably, activities
in a service instance are hosted in a single connector.

Choreography definition languages generally define a
flow of messages between roles. WSDL defines service
interfaces of the roles. But the choreography definition
languages have not merged with WSDL. Missing is a clear
binding between a choreography and a service. One aspect
of the present invention includes mapping a choreography
role to a service instance and a choreography message to an
in/out parameter of a service operation. This is more fully
discussed in the Dynamic Interface between BPSS Conver-
sation Management and Local Business Management appli-
cation, identified above.

The present invention allows a service definition to define
a set of choreographies (identified by name, for example)
that the service supports and the role in that choreography
that can be dynamically determined. A service instance will
indicate the subset of choreographies that it supports and
may indicate an order of preferences among supported
choreographies. At runtime, an intersection of supported
choreographies among participating service instances is
computed and a particular version of a choreography is
selected for use in the message exchange. The preferences of
one or more services can be factored into the decision of
which choreography version to use. Rules such as initiator
wins, respondent wins, latest version wins, earliest version
wins or a weighting of preferences might be used in the
factoring. Alternatively, an agreement between the two
services can be predefined that specifies the choreography
version to use. All of the choreography participants use the

US 9,449,297 B2

7

same choreography for all subsequent messages in the
choreographed conversation. This allows choreographies to
evolve without requiring all services in the whole network to
be upgraded. This is so-called choreography version inter-
operation. This interoperation is achieved independent of the
language used to describe the choreography, but does
depend on the services understanding the meaning of a
choreography from its name.

Two methods of selecting a choreography version or
discovering a service version are illustrated in FIGS. 2 and
3. In FIG. 2, messages are used to exchange information
about versions between a first service 201 and a second
service 202. This approach may be extended to more than
two services with a first message sent to all of the other
services or with an additional first message being sent from
the second or subsequent services to the other services. In
choreography, for instance, the first message 211 in differing
variations and versions of a choreography are substantially
the same. Messages may differ slightly, due to document
version considerations. Other minor variations in the first
message may be allowed, while the first message remains
compatible with all choreography versions. After the cho-
reography used is selected in the first message, all subse-
quent messages in either direction between the services are
part of this choreography. After a choreography version is
selected, subsequent messages 212-224 conform to the
selected choreography. In FIG. 3, reference to one or more
registries is used to discover information about versions
supported by a first service and a second service. The service
local to the discovery process may store version information
in a first registry 331 that is accessible to a method 321. The
remote service would store version information in second
registry 332 that is accessible to a method 323. In some
cases, the remote service’s information would be in the first
registry 331 and accessible to a method 322. For instance, if
the first and second services were in the same community
and relied on the same registry. Or, if the first and second
services had had recent contact and the first service cached
the second service’s information in the first registry. Infor-
mation about versions supported by both services would be
considered by version selection logic 311.

Thus, aspects of the present invention can be combined in
several ways to dynamically determine some or all of
document versions, service versions and choreography ver-
sions. Implemented in accordance with the present inven-
tion, a web service can be substantially updated and retain
interoperability with other services that have not been simi-
larly updated.

Further aspects of the present invention enable complex
choreographies and business processes to be defined and
executed between distributed collaborative web services
across the Internet or another network, in so-called peer-to-
peer interactions or collaborative interactions. It also sup-
ports the standard client/server interactions (or non collab-
orative interactions) that are common in legacy web services
implementations. In peer-to-peer interactions, choreography
support for correlates related messages exchanged among
services and includes return addresses in messages of the
conversation.

A collaborative service might have a virtual conversation
with a non collaborative web service or other application
interface. Basically the two services use client/server inter-
actions with each other and know out of band the return
address. The services correlate messages using application
logic that examines the message payloads.

Collaborative services have zero or more associated con-
texts. New contexts are created by one or more trigger

10

15

20

25

30

35

40

45

50

55

60

65

8

operations. Alternatively a context may be initiated sponta-
neously (from a messaging standpoint). Subsequent non-
trigger operation initiations are tied to this context. A process
flow instance is the context referred to. One operation kicks
off the process instance and all subsequent messages relate
to this instance. This context helps in having a bi-directional
conversation with an initiator and bi-directional conversa-
tion with other services driven by the context. For non-
collaborative services, each operation is complete in itself,
the initiator could be any program and need not be a service,
and it is independent of the invocation of every other
operation in the service.

More generally, there are two types of message interac-
tions between parties. A peer-to-peer message is typically
associated with a choreography. In a peer-to-peer interac-
tion, a few additional pieces of information are provided. A
return address is provided, typically identifying the sending
CP, service definition, and activity definition. Message cor-
relation data is provided, such as a conversation ID and
choreography ID and refers to ID. The return address
identifies where the invoked service should respond. To
further assist this service, the applicable choreography used
for this interaction may be returned to both services on each
message in the conversation. The conversation ID has the
same value for every message in the conversation between
two services. This will allow the services to easily correlate
related messages. The choreography ID is selected on the
first message and stays the same for the conversation. The
refers to ID refers to the message ID of the message to which
this is the response. A single message might have multiple
responses.

The second type of message interaction is a client/server
interaction (also called non-collaborative interaction.) In a
client/server interaction, there typically is no sending ser-
vice/activity. The request and the optional single response
typically completes the interchange and subsequent client/
server interactions are unrelated to this one.

One special aspect of client/server is transformation sup-
port for the response in a request/response invocation. In a
peer-to-peer interaction the sending service says in its inter-
face what document it expects in the response. However for
client/server, this is not the case, and the requester has to say
in the request the documents it expects in the response. If the
requestor does not specify the expected document for a part,
the document as generated by the responder is sent without
any transformation.

A service may include a plurality of document exchange
activity interfaces. A document exchange activity interface
may be defined both as part of a service definition and
(customized) when the service instance is registered. An
activity is described by its interface and its policies. Ul
services, for instance, may register their activities in the
registry for privilege determination, and other access control
information such as single sign on web agents, and resource
paths.

An activity can be of four types, illustrated in FIG. 4. A
request/response 411: The activity receives a request and
responds. A solicit/response 412: This is the inverse inter-
face of a request/response. A solicit response activity may
invoke a request/response activity in another service
instance. One-way 414: This is an activity that receives an
asynchronous message. Notification 413: This is the inverse
interface of a one-way. A notification activity invokes a
one-way activity in another service instance. These defini-
tions are consistent with WSDL.

The input or output to an activity is called a message. A
message consists of multiple parts. Parts are described in the

US 9,449,297 B2

9

following way. The part name is a unique name for the part
that is reused for every message from/to the activity for that
part. The part type could be an XML part, or a part that is
described by a MIME type. If the part does not have a MIME
type defined, then the MIME type for the part can be
supplied at run time by the invoker. The part location
specifies whether the part is in the body, or an attachment.
Alternatively, it may be in a message header or external to
the message and the message only refers to it. A part may be
required or optional. A root indicator: There should be one
root part in a message. This typically is the main theme of
a message and the typically is an XML part. The root part
indicates the starting point of traversal to find the other parts.
It may include references to other parts, but not necessarily
all of them can be discovered by traversing from the root
part. A message also may include a document ID list. Any
part (XML or non XML) can belong to a document family.
Associated with members of a document family (called
document Ids) are descriptor information, optionally a
schema, and optionally transformation maps of various
types from/to this member. Document family metadata is
registered independently of services.

Within a choreographed service, a process flow can be
used to coordinate activities on opposite sides of the inter-
face. The concept of a process flow, which is defined using
design tools and the definition executes in a process engine,
has been used in other contexts. Commerce One, for
instance, has a process flow solution called CPM. A process
defines a flow with potential branching points and parallel
threads of execution. A process instance has associated with
it a context and is initiated by some event and is long lasting.
This context goes through a series of state transitions
triggered by other events and the process itself can initiate
events as part of the flow. The events may include Ul
interactions, document exchange events (sending or receiv-
ing messages with document payloads), a change in the
context state or associated database state, or invocation of
business logic.

FIG. 5 illustrates interactions between activities and an
internal process. The activities 411 through 414 exchange
messages with the process flow from 521 through 525. The
process flow steps pass messages among themselves. In
another instance, the process flow could include branching
and parallel execution of processes.

An internal process flow executing in a process engine
also can be used to construct a choreography agent that
centrally manages choreographies, as illustrated in FIG. 6.
Choreographies can be centrally managed by making all
messages flow through a choreography agent 610 that, itself,
appears as a collaborative web service and utilizes an
internal process flow 612. Adapted to a choreography agent,
a message from service 630 to service 640 is changed to be
a message from service 630 to the intermediate service 610,
which forwards it to service 640. An asynchronous response
from service 640 back to service 630 is changed to be a
message from service 640 to the intermediate service 610,
which forwards it to service 630. The choreography agent
601 includes interfaces 611, 613, 614 through which mes-
sages are passed. An internal process flow 612 can be used
to track the status of one or more choreographies. Some or
all of the internal process flow steps may store information
in a transaction rollback log, to be used in case the choreo-
graphed message exchange terminates without completion.
Interfaces can be added to support querying the status of one
or more choreography instances that are being coordinated
through the choreography agent. Similarly, activity statistics
can be compiled during choreography coordination and

10

15

20

25

30

35

40

45

50

55

60

65

10

reported through an interface. This centralization allows the
status of the choreography to be queried easily for tracking.
Error handling and error compensation actions can be more
easily implemented. When the intermediate service is imple-
mented as a process flow, the choreography is likely to be
globally correct, because the internal process flow conforms
to the process definition. Global checking of the choreog-
raphy for correctness is facilitated.

A process flow executing in a process engine gets mes-
sages that trigger events and sends messages as part of
processing an event. These messages can be described using
a standard web services definition language like WSDL.
These descriptions can be easily discovered with standard
registries like UDDI. Therefore, these messages can be
grouped together into web services. The messaging system
can route messages to the activities of this service to the
connector executing the flow. Some operations can have the
semantic of launching a new process instance. Messages to
these operations will result in a new process instance. For
other inbound messages, a dispatcher in the connector can
link the message to an existing process instance by deducing
the instance based on payload content, the state of the
process instance (if it is at a step where it is waiting for a
particular message to a particular operation) or message
correlation data in the message envelope (useful when the
inbound message is a asynchronous response to a previous
outbound message).

Process flows that execute in a distributed fashion in
multiple process engines 610, 620, 630, 640 passing their
internal state between themselves can be treated as a set of
collaborative services interacting with each other.

A further aspect of the present invention is optionally
requiring subscription to a service prior to being invoked.
During service subscription, for a collaborative service, one
of the possible choreographies can be selected and agreed
for use by both the consumer and provider. Other aspects of
the service also can be agreed at subscription time, such as
access control.

Service oriented access control has three key concepts
that work together to facilitate manageability and enforce-
ment of access to services and activities/operations in a
service: service visibility, service subscription, and service
privileges or authorizations. Service visibility allows the
service provider to specify who can discover the service, and
allows the discovery mechanism to restrict the discovery
based on the visibility. The service visibility rules may
include: visible to anyone, visible to administrator/operator,
visible to specific parties in community, visible to specific
roles in community, visible to any community in the net-
work, or visible to specific communities in the network.
Visibility also applies to collaboration parties (sometimes
called trading parties or partners). When a party is registered
in the community, the party is by default visible in the
community. Additionally, the party can be made visible to
any community in the network, or to specific communities
in the network. Service and party information also can be
pushed into public UDDI registries based on the visibility
rules specified.

For each service activity, set of privileges also can be
established at subscription time (or by default.) For each
service, the application can also specify service roles that
effectively are privilege groups. For a privilege, additional
details can be specified, such as ‘whether the privilege
supports scope of specific organization units’ and ‘whether
the privilege can only be used as part of a service role’, etc.
A Service can also specity if it requires some sort of
subscription prior to someone using it. For example, a

US 9,449,297 B2

11

supplier may specify in an order management service, that
buyers can send orders to this service only after subscribing.
The subscription process allows the service provider to
receive information regarding the subscribing party, as well
as the capabilities of the subscribing service, if required.
Based on this information, the service provider may choose
to approve the subscription or reject it.

Once a party administrator subscribes to a service, they can
create user roles within their own organization by grouping
the service roles and/or privileges within the subscribed
services and assigning these user roles to user accounts.

Another major challenge for support of choreographed
interactions is back office systems. Use of a service com-
position agent can address the problems associated with
back office system integration. Back office systems typically
do not understand SOAP extensions that support choreo-
graphed conversations, including extensions to support for
message correlation and return address specification. There-
fore, it is useful to have a composition agent expose a
collaborative web services interface that is mapped bi-
directionally to the simple web services interface of the back
office system, as shown in FIG. 7. The composition agent
correlates related messages by executing rules against the
payload and deduces the return addresses of the applications
from the peer-to-peer invocation message from the applica-
tion. Back office systems expose their functionality differ-
ently, so there typically is a different set of service defini-
tions for each back office system. A composition agent
simplifies keeping track of multiple evolving back office
systems by presenting them at a single interface. The com-
position agent selects the correct back office service and
action. Back office systems support a variety of XML
document definitions, when they have been augmented with
EAI interfaces. Examples include xCBL, IDOC, OAGI, etc.
Aspects of the present invention allow these document
defined using this variety of definition languages to be
treated as members of single document family. Translation
logic can be invoked to convert messages back and forth
between document family members. EAI interfaces to back
office systems typically do not support rigorous security,
reliable messaging, etc. The composition agent can support
security, reliability, etc. between itself and inquiring ser-
vices. The composition agent can use less robust and secure
solutions can be used in the last hop between the back office
system and the last native connector, or special security and
reliability measures can be adopted.

The composition agent service can support logical routing
(target address selection by payload examination and/or
registry lookup) for conversations with the back office
system, including conversations initiated by the back office
system. Message correlation is illustrated in FIG. 7. A non
choreography enabled system 710, such as a back end
system, communicates with an enabling process or compo-
sition agent 720. The communications are configured, in
part, by specifying fields within messages that the compo-
sition agent will receive 721, 722, 723. Message correlation
logic 724 can be used to correlate messages with a new or
ongoing choreography 725. This choreography can be mod-
eled, as described above, as an internal process. The corre-
lation logic 724 can be positioned in the message flow to
process each message from the back end system as it is
received. Or it can be a resource available to process steps
in the process flow 725. The positioning of the correlation
logic 724 is less important than its actions: inspecting
messages generated by the back office application interfaces
and using the specification of fields to correlate back office
messages with a choreography instance. The correlation

10

15

20

25

30

35

40

45

50

55

60

65

12

logic can be extended to conversations initiated by the back
office system. When the correlation logic determines that the
source of the message always initiates conversations or
determines that there is no existing conversation that corre-
lates with specified fields in the message, the correlation
logic can signal that a new conversation instance needs to be
created. The correlation logic further can use the specified
fields to determine what choreography should be invoked.
For instance, a back office system may initiate supplier
orders. The supplier name field can be used to identify the
proper CP and the service that the CP uses to receive new
orders. A choreography associated with that service can be
invoked. The composition agent 720 is exposed to chore-
ography enabled services 730 through standard interfaces
726, 727. One or many services may interact with the
composition agent through its service interfaces. The com-
position agent and the correlation logic track the status of the
choreographed conversation and correlate messages
exchanged with the back office system 710 to the appropriate
conversation ID used in messages exchanged with other
services 730.

Another aspect of the present invention is exposing a
single hosted service through a plurality of aliases that are
franchised by the host to service franchisees. Unlike fran-
chisees in brick and mortar businesses, these franchisees are
not expected to advertise the identity of the host. In a sense,
these service franchisees are more like private labelers of
OEM goods. The franchised services can be registered to
interact with other services or they can be routes to one or
more back office systems that the host is designed to support.

FIGS. 8 and 9 help distinguish between a regular, non-
franchised service and a franchised service. In FIG. 8, two
services 811, 812 appear in a registry of services 810. In the
non-franchised scenario, these registry entries provide logi-
cal address that correspond to two different instances 831
and 832 of the same service logic. These instances of service
logic are like two licensed copies of server infrastructure
software running on two different web servers. In FIG. 9,
three franchised services 911, 912, 913 appear in a registry
of services 910. These franchised services have different
logical addresses. All of them are logically connected to a
host service 921, which is not exposed through the registry
in the same way as the franchised services. Messages sent to
the different logical addresses are in different contexts,
corresponding to the franchisees of the three franchised
services. With the context set by the logical relationship
between the franchised services 911, 912, 913 and the host
921, the franchiser who has franchised the host 921 can use
one instance of the host logic 931, instead of running
instances of the logic 831, 832 for each registered service.

Consider a use case in which a marketplace operator hosts
an order management application (a collection of services).
A set of suppliers then franchise this hosted services package
to manage all orders for them. In this case, messages to a
franchisee are addressed to the <franchisee CP>, <service
definition>, <activity definition>. Both Ul and document
exchange services are franchised. In practical terms, one
embodiment of implementing franchised services involves
the following steps. 1. Create a host instance of a service. 2.
Create a host package by collecting a set of host services
together. The hosting entity is the owner of the package.
Also the package is tied to a connector where the actual
implementation lives. 3. Associate to the host package a set
of services that are subscribed by the franchisee that allow
the franchisee to process the received documents. This
allows one or more franchisees to franchise the host pack-

US 9,449,297 B2

13

age. Steps 1 and 2 should, in some environments, be done by
the community administrator, while step 3 can be done by a
service provider.

A franchise collaborative service can optionally delegate
authentication in the registry to the hosting services CP. One
reason for this would be that the franchisee does not want to
use the franchisee’s credential because the franchisee does
not want to identify itself completely. In this case, the
franchisee will delegate authentication to the hosting CP for
all messages from this service on behalf of this franchisee.

The franchised service is like a “pass-through’ service that
sets a context and allows all information to simply flow to
the host service and get processed by the host service. The
franchise service will have a reference to the host service,
and generally will inherit the implementation capabilities
and policies from the host, with some overrides allowed
based on business need. Preferably, there is no implemen-
tation tied directly to the franchise service. If customization
is required, it is preferred to offer multiple hosted service
variations. Alternatively, multiple choreographies might be
supported by a hosted service and a subset of the choreog-
raphies supported for a particular franchised service. Mes-
sages to a franchisee are addressed to the <franchisee CP>,
<service definition>, <activity definition>, as if the franchi-
see were operating a standalone service. Service consumers
can interchangeably subscribe to and use regular or fran-
chise services. Service consumers interacting with franchi-
sees do not see any difference franchised and non franchised
services.

Ahost service package is a package that consists of all the
services implemented generally by a hosted application. A
single hosted application can publish multiple host pack-
ages. In most cases, a hosted application will publish a single
host package. Services bundled with a host service package
may be grouped into two types. One type of host services is
‘re-offered’ as franchised services on behalf of the franchi-
see. Another type includes portal (or UI) services used by the
franchisee to process information received through the fran-
chised services, but not re-offered or exposed beyond the
franchisee. For example, an order management package may
have a standards based ‘receive orders’ service and also have
other UI services such as ‘view orders’, ‘order reports’,
‘approve orders’ etc. When a franchisee signs up to franchise
the order management package, he/she needs to be able to
not only receive orders through the standards based docu-
ment exchange service, but also view them and approve
them etc. A Host Package has a package connector that will
be the default connector for each service in the package to
send or receive messages.

A business process between the Franchisee and the Host
provider is enabled to allow the franchisee to franchise the
host package online, with an online approval process, where
required. When a service provider franchises the host pack-
age, a franchised service is automatically created and reg-
istered as a pass-through to each host service in the package.
Further, the franchisee is also automatically subscribed (and
hence authorized to use) the other subscription services in
the package, when the franchise is registered.

A franchise service can optionally delegate authentication
to the host service, as previously mentioned. In one embodi-
ment, the practical steps involved in delegating authentica-
tion on the host side may include: 1. Create a host instance
of a service (typically only document exchange services). 2.
Create the regular services that will be used by the franchi-
see as part of the package. 3. Create a host package &
specify the collection of host services that will be enabled as
provided by the franchisee. 4. Associate a connector for the

10

15

20

25

30

35

40

45

50

55

60

65

14

host package that will send/receive messages for the host
services. 5. Associate the set of services that are subscribed
by the franchisee that allow the franchisee to process the
received documents. 6. Host provider can specify on the
package whether approval is required when a franchise is
requested. 7. Host provider can specify if delegated authen-
tication is allowed on this package. On the franchisee side:
1. Franchisee request franchise of a host package. This
triggers an approval process if required by the Host Provider.
2. Host Provider receives notification to approve the request,
and either approves or rejects the request. 3. If Host Provider
approves the request, system creates a franchise package,
subscriptions to the subscription services in the package, and
franchise services for the franchise-able services in the
package.

To facilitate understanding of franchised services, a sup-
plier facing order management system is considered. For
this discussion, this system is called SOMS (Supplier Order
Management System). SOMS provides an order manage-
ment system that can be used by suppliers to receive orders
from buyers. In one embodiment, the following steps may be
involved in designing and setting up SOMS. The designer
divides the services to be published into groups including
services to be franchised by the franchisee (e.g., receive
orders, check order status etc.), services to be used (or
consumed) by the franchisee (e.g., view orders, approve/
reject orders, order statistics/reports etc.), and services that
application provides for A2A (application-to-application)
integration such as integration with other applications or
back office systems. (e.g., integration with user management
systems, public registries, catalog systems, etc.) The
designer determines whether all franchisees will have the
same set of services or if they may potentially need different
subsets. Based on this need, identify one host service
package or multiple host service packages, or, alternatively,
multiple choreographies of the same service. The host
service package should contain the ‘to-be-franchised’ ser-
vices and ‘for-use-by-franchisee’ services. The other ser-
vices used for integration are typically registered as regular
services with the providing cp as the application or the host
provider. In a community environment, the host provider is
typically the community operator, but it may also be any of
the collaboration parties in the community. It should be kept
in mind during design that the ‘to-be-franchised’ services
will actually be receiving and sending messages on behalf of
multiple service providers. Hence the application business
logic needs to use the addressee in the message as a context
for processing the messages. A host service implementation
should look at an incoming message to figure out the
recipient CP and trigger/map to the appropriate business
process. For Ul triggered business processes, the host ser-
vice should take the franchisee CP as an input to the process
context, and use this in the delegation policies within the
process.

After design and coding, the sample SOMS service will
need to be registered, at least in some embodiments. Reg-
istration of services to be franchised, services to be used by
franchisees and the host service package itself is illustrated
by several setup screens in the figures. One part of regis-
tration is to register the host services to be franchised. In one
embodiment, a registry manager Ul is used to create a new
service definition for the service (if it does not exist already).
Then verify that a connector is available for your applica-
tion. This may be a default connector available to a fran-
chiser or a separate connector registered for to the franchis-
er’s application. Also verify that any required document
identifiers have been loaded into the registry. Then, create

US 9,449,297 B2

15

the host services as follows. FIG. 10 is a manage host
packages screen. Click on ‘Register New” 1001. FIG. 11
depicts parts of registering a new host service. Select a
service definition 1101. Pick the operator party as the
“Providing Party” 1102 or use a different party as appropri-
ate. Specify the service information 1103, leaving the
Application Instance Name’ and ‘ Application Service Iden-
tifier’ blank. Optionally, specify any service classifications
1104 that should be associated with this service. Select the
choreographies that are supported by this service 1105, and
the order of preference. Set the visibility 1106 to default
setting, which is ‘Visible to All Parties in Community’.
Select the supported document exchange activities 1107 and
edit the activities using a screen such as FIG. 12. Create
privileges 1201. Leave the defaults for the ‘Messaging
Policies’ 1202 unless your application needs special delivery
receipt handling. For input 1210 and/or output 1220 mes-
sages, set signing and encryption policies 1213, 1223 to
‘required’. Edit required parts 1214, 1224 and specify an
ordered list of the supported document identifiers. Add
optional message parts, which may be published in the
registry. Using a screen such as FIG. 13, verify or modify the
policies as follows: Set asynchronous delivery receipt 1301
to ‘Yes’. Set ‘Authentication Mode’ 1302 to ‘Document
Single Sign-on’. Set ‘Authentication Mechanism’ 1303 to
‘Username/password’. Then, optionally, specify any service
roles 1304. Click on ‘Submit/Save’ 1305 to register the
service.

Another part of registration is to register regular services
to be used by the franchisee (as opposed to hosted services.)
This is done in the manner normal to web services devel-
opment.

The host service package also is registered, using screens
such as FIG. 14. At the ‘Register a New Host Package’
screen, specify a package name 1401, and description 1402.
Specity an application name 1403. Pick the operator party as
the ‘Host Service Provider’ 1404 or use a different party as
appropriate. Specify the service information (keep the
Application Instance Name and Application Service Identi-
fier ‘blank’) Specity if approval is required for franchising
this package 1405. If “Yes’, an approval process will be
triggered when a CP franchises this package. Specify the
application connector 1406. Specify if the franchisee is
allowed to delegate authentication to the host service pro-
vider 1407. Select the services to be franchised by the
franchisee, out of the list of host services offered by the host
service provider 1408. Select the list of services to be
subscribed by the franchisee, out of the list of regular
services offered by the host service provider 1409. Click on
‘Save’ 1410 to register the host service package.

The franchisee also registers, selecting a new package to
franchise from a screen such as FIG. 15. One or more host
packages are selected by selecting radio buttons 1501 and
clicking ‘Select” 1502. A screen such as FIG. 16 becomes
accessible. The franchisee’s options are limited, so the set up
is straightforward. In an alternative embodiment, the fran-
chisee would have options regarding services to offer and/or
services to subscribe to, especially in circumstances when
the franchisee was re-offering the services. Decide whether
authentication will use the franchisee’s credentials or will be
delegated to the host 1601. Edit one or more services to be
offered 1602, satisfying any indicated requirements 1603 for
editing. Select ‘Submit’ 1604 to submit the franchise for
processing.

When service details are edited, a screen such as FIG. 17
become accessible. In some embodiments, most of the
details presented will only be editable by the host, not the

10

15

20

25

30

35

40

45

50

55

60

65

16

franchisee. This can be seen by comparing FIG. 17 with
FIGS. 11 and 13. Some of the details presented apply to
downstream users, to whom the service is re-offered, in the
same manner in which the host applies them to the franchi-
see. The descriptions of FIG. 11 generally apply. In addition,
service roles, which group privileges, can be established, as
described above.

Some of the services that a franchisee may subscribe to
are portal services. A portal service (or an Ul service) is a
service that is accessed through a portal. These are simply
the services exposed by an application to enable users to
interact with the application. This allows users to have a
service-oriented view of applications. A specific user may
interact with services from different application, and may/
may not interact with all services from one application. In
any of these cases, the experience across the applications in
terms of administration, access control/privileges, single
sign on, navigation etc. will be the same, and based on
services paradigms.

A portal service may not have a service definition. (There
are no standards yet. While the present embodiment does not
require a service definition for portal services, it is envi-
sioned that in the future there will be a service definition for
portal services.) A portal service has a list of registered
activities (along with the URLs, if necessary) that can all be
accessed through the portal. For activities, lists of privileges
that enable access to the activity are also specified. Addi-
tionally, single sign on (SSO) information such as web
agents and protected resource paths are also specified for the
service or for each activity. Access to reports may also
enabled through portal services, by registering report
groups/folders as activities.

It is useful to consider several factors when identifying
the Ul services to be registered for an application. Consider
the target users or parties. Application interfaces are
designed for use by different target users. For example,
certain UT’s are meant for administrators, certain UI’s are
meant for buyers, certain UI’s are meant for Suppliers, etc.
These role differentiated UI’s should be separate services.
Consider if certain interfaces are targeted for only certain
classes of suppliers or buyers. For example, you may want
to enable additional functionality for advanced suppliers
only. Keep these in separate services.

If you have many services targeted to one target group
(e.g., suppliers), consider creating service subscription pack-
ages to group these for user convenience. Collaboration
parties subscribe to a service, and users within the party are
granted specific privileges within the service. This means
that privileges and activities across parties should not be
mixed. For example, buyer submit RFP and seller respond to
RFP privileges should be in two different services.

For the portal services, a specific display category may be
associated. The display category reserves a tab on the portal
for the service. Many portal services can be in one display
category. A display category is associated with a service
room URL specified by the application. By registering the
service room URL, the application retains full control on
how the services are rendered in the portal within the tab. If
you would like your application to be rendered as multiple
display categories, identify services based on the display
category they are associated with.

Preferably, the following relationships among services,
activities, privileges, and web agents are observed. 1. Ser-
vice can have one or more activities. 2. An Activity can be
associated with zero or more privileges. 3. Privileges belong
to and are unique within a service. 4. A Privilege can be
associated with one or more activities in the same service. 5.

US 9,449,297 B2

17

A Service can be associated with a default web agent that
handles single sign on (SSO) along with a list of web
resource paths that are accessible through the service. 6.
Each activity in the service can either be associated with the
service web agent, or overridden with a different web agent.
Access to activity specific resource paths can also be speci-
fied.

It is useful to consider several factors in identifying the
activities and privileges in Ul services. 1. Activities &
privileges in a service should be targeted within a collabo-
ration party. This means that privileges and activities across
parties should not be part of the same service. Again, buyer
submit RFP and seller respond to RFP privileges should not
be in the same service. 2. It is not preferred to register every
link in the application as an activity in a Ul service. If access
control is required, these can be registered as privileges. 3.
In the simple case, a portal service can register just one
activity and a bunch of privileges. For example, there could
be ‘auction bid’ service that has one activity ‘bid’ with a set
of privileges that allow specific bidding functionality. Based
on the privileges assigned to the user, the application can
choose to render completely different pages, or the same
page with different options enabled. If links to these activi-
ties are enabled from other applications/services, a user may
want to register more granular activities, along with the URL
so that these can be discovered through the registry. For
example, Catalog Management may want to register ‘search
catalog’ activity, along with ‘manage catalog’ activity. The
‘search catalog’ activity may be presented as a link on
procurement screens, source screens, and contract manage-
ment screens, as well as manage catalog screens. 5. If certain
links in a service are hosted in a different application server
or web server and need a separate web agent to protect them,
these can either be grouped into a separate service, or
registered as separate activities in the same service. (E.g.,
product configuration activities that may run on a different
web server from the rest of the catalog service activities).

While the present invention is disclosed by reference to
the preferred embodiments and examples detailed above, it
is understood that these examples are intended in an illus-
trative rather than in a limiting sense. From the preceding
description, it will be apparent to those of skill in the art that
a wide variety of systems and methods can be constructed
from aspects and components of the present invention.
Computer-assisted processing is implicated in the described
embodiments. Accordingly, the present invention may be
embodied in methods for computer-assisted processing, sys-
tems including logic to implement the methods, media
impressed with logic to carry out the methods, data streams
impressed with logic to carry out the methods, or computer-
accessible processing services. It is contemplated that modi-
fications and combinations will readily occur to those skilled
in the art, which modifications and combinations will be
within the spirit of the invention and the scope of the
following claims.

We claim as follows:

1. A method of choreographing web services, the method
including:

routing a plurality of message exchanges in a web service

choreography between three or more service entities,
the plurality of messages being routed through a shared
choreography agent operating as an intermediary ser-
vice on hardware in communication with the three or
more service entities, wherein the choreography of web
services includes a plurality of messages mapped to
standard-compliant interfaces of the three or more
service entities; and

10

15

20

25

30

35

40

45

50

55

60

18

using, by choreography agent at least one common cho-
reography instance data object to maintain message
correlations and a status of the choreography of web
services on behalf of the three or more service entities
wherein the choreography agent maintains the message
correlations and the status by:
inspecting the messages,
updating the status in the choreography instance data
object based on the inspection of the messages, and
forwarding the messages to appropriate service entity
destinations of the three or more service entities.

2. The method of claim 1, wherein the method is adapted
to a plurality of choreography definition languages.

3. The method of claim 1, wherein the method is adapted
to a plurality of service entity interface definition languages.

4. The method of claim 1, wherein the choreography agent
further responds to inquiries about the status of the chore-
ography.

5. The method of claim 1,

wherein the choreography agent further updates a trans-

action roll-back log, and

wherein the transaction roll-back log is distinct and sepa-

rate from the choreography instance data object.

6. The method of claim 1,

wherein the messages include documents, and

wherein the method further includes:

maintaining document versions of the documents and
translation logic to convert among versions; and

determining particular document versions to be used by
the service entities and translations, when needed,
among the particular document versions.

7. The method of claim 1, wherein the choreography agent
further determines that messages are compliant with a
message exchange protocol specified by the choreography,
including reviewing the status maintained in the choreog-
raphy instance data object.

8. The method of claim 1, wherein the choreography of
web services includes a plurality of messages mapped to a
choreography enabled entity.

9. A choreography agent device, including program
instructions running on a processor, carrying out a method of
choreographing web services including:

routing, by the choreography agent device, a plurality of

message exchanges in a web service choreography
between three or more service entities, the plurality of
messages being routed through a shared choreography
agent operating on the choreography agent device in
communication with the three or more service entities,
wherein the choreography of web services includes a
plurality of messages mapped to standard-compliant
interfaces of the three or more service entities; and
using, by the choreography agent at least one common
choreography instance data object to maintain message
correlations and a status of the choreography of web
services on behalf of the three or more service entities
wherein the choreography agent maintains the message
correlations and the status by:
inspecting the messages,
updating the status in the choreography instance data
object based on the inspection of the messages, and
forwarding the messages to appropriate service entity
destinations of the three or more service entities.

10. The choreography agent device of claim 9, wherein
the method is adapted to a plurality of choreography defi-
nition languages.

US 9,449,297 B2

19

11. The choreography agent device of claim 9, wherein
the method is adapted to a plurality of service entity inter-
face definition languages.

12. The choreography agent device of claim 9, wherein
the choreography agent further responds to inquiries about
the status of the choreography.

13. The choreography agent device of claim 9,

wherein the choreography agent further updates a trans-

action roll-back log, and

wherein the transaction roll-back log is distinct and sepa-

rate from the choreography instance data object.

14. The choreography agent device of claim 9,

wherein the messages include documents, and

wherein the method further includes:

maintaining document versions of the documents and
translation logic to convert among versions; and

determining particular document versions to be used by
the service entities and translations, when needed,
among the particular document versions.

15. The choreography agent device of claim 9, wherein
the choreography agent further determines that messages are
compliant with a message exchange protocol specified by
the choreography, including reviewing the status maintained
in the choreography instance data object.

16. The choreography agent device of claim 9, wherein
the choreography of web services includes a plurality of
messages mapped to a choreography enabled entity.

#* #* #* #* #*

20

